
MySQL Cursor

 By Prof. B.A.Khivsara

 Note: The material to prepare this presentation has been taken from internet and are
generated only for students reference and not for commercial use.

Cursor

• A cursor is a pointer to this context area. PL/SQL controls the
context area through a cursor. A cursor holds the rows (one or
more) returned by a SQL statement. The set of rows the cursor
holds is referred to as the active set.

• To handle a result set inside a stored procedure, you use a
cursor. A cursor allows you to iterate a set of rows returned by
a query and process each row accordingly.

http://www.mysqltutorial.org/mysql-stored-procedure-tutorial.aspx
http://www.mysqltutorial.org/stored-procedures-loop.aspx

Types of Cursor in Oracle

Basic Types
of Cursors

Implicit- oracle uses

for internal processing

Explicit -
construct/manage by user

itself

Implicit Cursors
 • Implicit cursors are automatically created by Oracle whenever an

SQL statement is executed, when there is no explicit cursor for
the statement.

• Programmers cannot control the implicit cursors and the
information in it.

• Implicit Cursor is associated with following DML Statements

• INSERT,

• UPDATE and

• DELETE

• In PL/SQL, you can refer to the most recent implicit cursor as the
SQL cursor, which always has attributes such as

• %FOUND,

• %ISOPEN,

• %NOTFOUND, and

• %ROWCOUNT.

Explicit Cursor

• Explicit cursors are programmer-defined cursors for gaining
more control over the context area.

• An explicit cursor should be defined in the declaration section of
the PL/SQL Block.

• It is created on a SELECT Statement which returns more than
one row.

• Working with an explicit cursor includes the following steps −

• Declaring the cursor for initializing the memory

• Opening the cursor for allocating the memory

• Fetching the cursor for retrieving the data

• Closing the cursor to release the allocated memory

Types of Cursor in MySQL

MySQL
cursor is

read-only
non-

scrollable
asensitive

Types of Cursor in MySQL

• Read only: you cannot update data in the underlying table through
the cursor.

• Non-scrollable: you can only fetch rows in the order determined by
the SELECT statement. You cannot fetch rows in the reversed order.
In addition, you cannot skip rows or jump to a specific row in the
result set.

• Asensitive: there are two kinds of cursors: asensitive cursor and
insensitive cursor. An asensitive cursor points to the actual data,
whereas an insensitive cursor uses a temporary copy of the data. An
asensitive cursor performs faster than an insensitive cursor because
it does not have to make a temporary copy of data. However, any
change that made to the data from other connections will affect the
data that is being used by an asensitive cursor, therefore, it is safer if
you don’t update the data that is being used by an asensitive cursor.
MySQL cursor is asensitive.

http://www.mysqltutorial.org/mysql-select-statement-query-data.aspx

Step for Using Cursor

Declare cursor

Open cursor

Loop

Fetch data from cursor

Exit loop

Close cursor

DECLARE statement

• Syntax

DECLARE cursor_name CURSOR FOR SELECT_statement;

•Explanation
• The cursor declaration must be after any variable declaration.

• A cursor must always be associated with a SELECT statement.

http://www.mysqltutorial.org/variables-in-stored-procedures.aspx

OPEN statement

• Syntax

OPEN cursor_name;

•Explanation
• The OPEN statement initializes the result set for the cursor,

therefore, you must call the OPEN statement before fetching
rows from the result set.

LOOP statement

• Syntax

[label_name :] LOOP

 statement_list

END LOOP [label_name]

•Explanation
• The LOOP loop depends on the careful placement of the LEAVE

statement to terminate iteration.

FETCH statement

• Syntax

FETCH cursor_name INTO variables list;

•Explanation
• Then, you use the FETCH statement to retrieve the next row

pointed by the cursor and move the cursor to the next row in
the result set.

CLOSE statement

• Syntax

CLOSE cursor_name;

•Explanation
• Finally, you call the CLOSE statement to deactivate the cursor

and release the memory associated with it

NOT FOUND handler

When working with MySQL cursor, you must also declare a NOT
FOUND handler to handle the situation when the cursor could not
find any row.

Because each time you call the FETCH statement, the cursor
attempts to read the next row in the result set.

When the cursor reaches the end of the result set, it will not be
able to get the data, and a condition is raised.

The handler is used to handle this condition.

NOT FOUND handler

•Syntax
DECLARE CONTINUE HANDLER

FOR NOT FOUND

SET exit_loop = TRUE

•Explanation
Where finished is a variable to indicate that the cursor has

reached the end of the result set. Notice that the handler
declaration must appear after variable and cursor declaration
inside the stored procedures.

MySQL cursor working

CREATE PROCEDURE cursor_proc2()
 BEGIN

 DECLARE id VARCHAR(3);
 DECLARE name1 VARCHAR(20);

 -- this flag will be set to true when cursor reaches end of table
 DECLARE exit_loop BOOLEAN;
 -- Declare the cursor
 DECLARE c1 CURSOR FOR SELECT rno, name FROM stud;

 -- set exit_loop flag to true if there are no more rows
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET exit_loop = TRUE;
 -- open the cursor
 OPEN c1;

 -- start looping
 L1: LOOP

 -- read the id and name from next row into the variables
 FETCH c1 INTO id, name1;
 select id,name1;
 -- check if the exit_loop flag has been set by mysql, close the cursor and exit the loop if it
has.
 IF exit_loop THEN
 CLOSE c1;
 LEAVE L1;
 END IF;
 END LOOP L1;
 END

Cursor Example 1

CREATE PROCEDURE sal_cur2()
 BEGIN
 DECLARE eno1 int(3);
 DECLARE sal1 int(20);

 DECLARE exit_loop BOOLEAN;
 DECLARE c1 CURSOR FOR SELECT eno, sal FROM emp;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET exit_loop = TRUE;

 OPEN c1;

 emp_loop: LOOP
 FETCH c1 INTO eno1,sal1;
 Select eno1,sal1;

 IF exit_loop THEN
 CLOSE c1;
 LEAVE emp_loop;
 END IF;

 END LOOP emp_loop;
 END

Cursor Example 2

CREATE PROCEDURE sal_cur2()

 BEGIN

 DECLARE eno1 int(3);

 DECLARE sal1 int(20);

 DECLARE exit_loop BOOLEAN;

 DECLARE c1 CURSOR FOR SELECT eno, sal FROM emp;

 DECLARE CONTINUE HANDLER FOR NOT FOUND SET exit_loop = TRUE;

 OPEN c1

 emp_loop: LOOP

 FETCH c1 INTO eno1,sal1;

 If sal1>4000 then

 Update emp set sal=sal1+5000 where eno=eno1;

 else

 Update emp set sal=sal1+1000 where eno=eno1;

 End If;

 IF exit_loop THEN

 CLOSE c1;

 LEAVE emp_loop;

 END IF;

 END LOOP emp_loop;

 END

Cursor Example 3

CREATE PROCEDURE sal_cur2()
 BEGIN
 DECLARE eno1 int(3);
 DECLARE sal1 int(20);

 DECLARE exit_loop BOOLEAN;
 DECLARE c1 CURSOR FOR SELECT eno, sal FROM emp;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET exit_loop = TRUE;

 OPEN c1;
 emp_loop: LOOP
 FETCH c1 INTO eno1,sal1;

 insert into emp1 values(eno1,sal1);

 IF exit_loop THEN
 CLOSE c1;
 LEAVE emp_loop;
 END IF;

 END LOOP emp_loop;
 END

Cursor Example 4

Assignment

• Write a PL/SQL block of code using
parameterized Cursor, that will merge the
data available in the newly created table
N_RollCall with the data available in the table
O_RollCall.

• If the data in the first table already exist in the
second table then that data should be
skipped.

Create O_rollcall table and add rows
in the table
• mysql> create table O_rollcall (rno int(3) primary key, name

varchar(20),addr varchar(30));

• mysql> insert into O_rollcall values(1,'Amit','Nashik');
mysql> insert into O_rollcall values(2,'Shital','Pune');
mysql> insert into O_rollcall values(3,'Ranak','Manmad');

• mysql> select * from O_rollcall;
+-------+-----------+-------------+
| rno | name | addr |
+-------+-----------+-------------+
1	Amit	Nashik
2	Shital	Pune
3	Ranak	Manmad
+-------+-----------+-------------+

Create N_rollcall table and add
rows in N_rollcall by O_rollcall table

• mysql> create table N_rollcall(rno int(3),name varchar(20),
addr varchar(30));

• mysql> select * from N_rollcall;

Empty set (0.00 sec)

• mysql> insert into N_rollcal select * from O_rollcall;

• mysql> select * from N_rollcall;

+-------+-----------+-------------+
| rno | name | addr |
+-------+-----------+-------------+
1	Amit	Nashik
2	Shital	Pune
3	Ranak	Manmad
+-------+-----------+-------------+

Delete rows from N_rollcall table

mysql> delete from N_rollcall;

mysql> select * from N_rollcall;
Empty set (0.00 sec)

Simple procedure to insert rows in N_rollcall
from O_rollcall if it is not exist in N_rollcall

• MySQL> Delimiter //

• MySQL>CREATE PROCEDURE new1(IN rno1 int(3))
 BEGIN
 If not exists (select * from N_rollcall where rno=rno1) then
 insert into N_rollcall

 select * from O_rollcall

 where rno=rno1;
 End If;
 END

 //

• MySQL>Call new1(1)//

Simple procedure with Parameterized cursor to
insert rows in N_rollcall from O_rollcall if that rno is
not exist in N_rollcall

CREATE PROCEDURE newcur(IN rno1 int(3))
BEGIN
DECLARE c1 CURSOR FOR SELECT rno FROM O_rollcall where rno=rno1;

OPEN c1;
 FETCH c1 INTO rno1;

 If not exists(select * from N_rollcall where rno=rno1) then
 insert into N_rollcall select * from O_rollcall where rno=rno1;
 End If;

 CLOSE c1;
 END
//

MySQL>Call newcur(2)//

CREATE PROCEDURE newcur1(IN rno1 int(3))

 BEGIN

 DECLARE rno2 int(3);

 DECLARE exit_loop BOOLEAN;

 DECLARE c1 CURSOR FOR SELECT rno FROM O_rollcall where rno>rno1;

 DECLARE CONTINUE HANDLER FOR NOT FOUND SET exit_loop = TRUE;

 OPEN c1;

 emp_loop: LOOP

 FETCH c1 INTO rno2;

 If not exists(select * from N_rollcall where rno=rno2) then

 insert into N_rollcall select * from O_rollcall where rno=rno2;

 End If;

 IF exit_loop THEN

 CLOSE c1;

 LEAVE emp_loop;

 END IF;

 END LOOP emp_loop;

 END

MySQL>Call newcur1(1)//

Parameterized cursor to insert rows in N_rollcall from
O_rollcall if rno> given rno1 is not exist in N_rollcall

cursor to insert rows in N_rollcall from O_rollcall if that
rno is not exist in N_rollcall

• CREATE PROCEDURE newcur2()

 BEGIN

 DECLARE rno1 int(3);

 DECLARE exit_loop BOOLEAN;

 DECLARE c1 CURSOR FOR SELECT rno FROM O_rollcall ;

 DECLARE CONTINUE HANDLER FOR NOT FOUND SET exit_loop = TRUE;

 OPEN c1;

 emp_loop: LOOP

 FETCH c1 INTO rno1;

 If not exists(select * from N_rollcall where rno=rno1) then

 insert into N_rollcall select * from O_rollcall where rno=rno1;

 End If;

 IF exit_loop THEN

 CLOSE c1;

 LEAVE emp_loop;

 END IF;

 END LOOP emp_loop;

 END//

MySQL>Call newcur2() //

References

Websites

• http://www.mysqltutorial.org/mysql-cursor/

• http://www.way2tutorial.com/plsql/plsql_cursors.php

• http://www.databasejournal.com/features/mysql/mysql-
cursors-and-loops.html

• http://www.brainbell.com/tutorials/MySQL/Working_With_Cu
rsors.htm

• http://www.c-sharpcorner.com/topics/cursor-in-mysql

Video

• https://www.youtube.com/watch?v=9z6ouWK5_l0

http://www.mysqltutorial.org/mysql-cursor/
https://www.youtube.com/watch?v=9z6ouWK5_l0
https://www.youtube.com/watch?v=9z6ouWK5_l0

